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Theaxial gapbetweenblade rows in turbomachinery should beminimized in order to reduce size requirements and

increase efficiency; although, there is a tradeoff between gapwidth and flow steadiness. The aerodynamic interaction

between rotors and stators influences system performance under both steady and transient conditions. To investigate

the basic physical mechanisms associated with the rotor/stator interaction, an efficient numerical scheme for solving

unsteady, viscous flows on a quasi-three-dimensional coordinate system is established using an immersed boundary

method. The data transfer between moving and stationary grids that slip against each other in traditional numerical

methods is avoided. The effects of the axial gap between adjacent blade rows are studied by considering the flow

evolution through a rotor and stator stage in different Reynolds number regimes. Results indicate that reduced blade

gap leads to high lift on the rotor blade and improved stage loading. At the same time, the rotor/stator interaction

increases flow unsteadiness, which may in turn increase noise and vibration. It is found that the reduced blade gap

does not always improve performance, in spite of the generation of vortex lift. The present work provides guidelines

for optimization of the axial gap between blade rows for turbomachinery design.

Nomenclature

Cd = drag coefficient
Cl = lift coefficient
Cp = static pressure coefficient
Cs = width of stream surface
c = chord
d = diameter of cylinder
e = internal energy
Fx, Fy = boundary forces
f = boundary force density
h = enthalpy
Lx = length in x coordinates of computational zone
Ma = Mach number
m, θ = coordinates of stream surface
p� = total pressure
Re = Reynolds number
St = Strouhal number
U = velocity of incoming flow at inlet
U∞ = freestream velocity
V = moving velocity of rotor blade
v = fluid velocity
α1, α2 = stagger angle
Γ1 = circulation around rotor
Γ2 = circulation of shedding vortex
δ = axial gap
μ = dynamic viscosity
ρ = density
τ̂ij = viscous stress tensor
ϕ = U∕V, flow coefficient

ψ = time-averaged total-to-total pressure rise coefficient
ψ t = instantaneous total-to-total pressure rise coefficient

I. Introduction

A COMPACT turbomachinery design can be achieved by reduc-
ing the axial gap between blade rows. This practice, however,

has a strong effect on the flow development, and it must be treated
with care. Experiments in turbomachinery have proved that unsteady
interactions between blade rows, including potential-flow and wake
interaction, have a significant influence on stage performance, load-
ing, noise, and response to impressed disturbances. Because un-
steadiness in the flowfield leads to enhanced system response and
noise, blade rowsmust be kept at a certain distance from each other to
minimize rotor/stator interaction.
Several studies [1–4] have suggested, based on both computational

and experimental results, that flow unsteadiness can be reduced as the
axial gap between adjacent rows is increased. Smith [5] observed,
however, in a series of experiments on a four-stage low-speed
compressor, that the average total pressure efficiency increases if the
axial gap between rotors and stators is reduced. This phenomenon has
also been observed in recent investigations [6–9]. The process can be
modeled using the theory proposed by Smith [10], based on wake
recovery, which has a significant impact on the efficiency of a
turbomachine. Most of the existing studies [5–9], however, focus on
wake decay (which is dominated by wake stretching [11]) and
entropy generation. It is thought that the stage loss caused by wake
mixing can be suppressed by the interaction between the wake and
the blade row when the axial gap is reduced. In practice, determina-
tion of an optimal axial gap remains a problem of concern, given the
significant benefits of understanding and designing for reduced size
and increased efficiency.
In addition to stage efficiency, stage loading is another important

turbomachinery performance indicator. Furber and Ffowcs Williams
[12] reported that the stage loading of an axial pump could be
improved by reducing the axial gap between blade rows. A higher
stage rise of total pressure was observed with a smaller axial dimen-
sion of the pump in experiment. Furber and Ffowcs Williams
attributed the improvement to the Weis–Fogh [13,14] mechanism. A
critical factor of this mechanism, the effect of unsteady vortex,
however, was not taken into account in their steady potential-flow
model, and rotor loading, which is determined at the instant of blade

Received22April 2015; revision received17September 2015; accepted for
publication 19 September 2015; published online 22 December 2015.
Copyright © 2015 by the American Institute of Aeronautics andAstronautics,
Inc. All rights reserved. Copies of this paper may be made for personal or
internal use, on condition that the copier pay the $10.00 per-copy fee to the
Copyright Clearance Center, Inc., 222RosewoodDrive, Danvers,MA01923;
include the code 1533-3876/15 and $10.00 in correspondence with the CCC.

*Postdoc Research Fellow, School of Jet Propulsion; lindu_buaa@sina.cn.
†Professor, School of Jet Propulsion; sunxf@buaa.edu.cn (Corresponding

Author).
‡William R. T. Oakes Professor and Chair, School of Aerospace

Engineering; vigor.yang@aerospace.gatech.edu.

472

JOURNAL OF PROPULSION AND POWER

Vol. 32, No. 2, March-April 2016

D
ow

nl
oa

de
d 

by
 G

E
O

R
G

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

Ju
ne

 2
8,

 2
01

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.B

35
85

8 

http://dx.doi.org/10.2514/1.B35858
mailto:lindu_buaa@sina.cn
mailto:lindu_buaa@sina.cn
mailto:sunxf@buaa.edu.cn
mailto:sunxf@buaa.edu.cn
mailto:sunxf@buaa.edu.cn
mailto:vigor.yang@aerospace.gatech.edu
mailto:vigor.yang@aerospace.gatech.edu
mailto:vigor.yang@aerospace.gatech.edu
mailto:vigor.yang@aerospace.gatech.edu


contact, was assumed to be constant. The Weis–Fogh mechanism
[13,14] was discovered in the “clap-and-fling” motion of a small
Encarsia formosa byWeis–Fogh [13]. Another kind of interaction is
the forewing and hindwing interaction seen in dragonfly flight,
indicated by the variations of the phase relation between them during
different maneuvers [15–23]. Sun and Lan [15] investigated the lift
requirements for a hovering dragonfly using a three-dimensional (3-
D) Navier–Stokes solver with overset grid method. It was found that
the interaction effect between the two wings reduced the vertical
forces on the fore- and hindwings. This effect was also observed in
the study by Wang and Sun [16]. Wang and Russell [21] concluded
that the aerodynamic power expended was reduced when the wings
moved out of phase, and the force was enhanced when the wings
moved in phase. Zhang and Lu [22] found that the interaction
between the fore- and hindwings effectively enhanced the lift force
and reduced the drag force on the wings compared to two indepen-
dent wings. In the dragonfly flight, the anomalously high-lift coef-
ficients (two to six) were observed, which were difficult to explain
using quasi-steady analysis [18–20]. The fore- and hindwings were
about a wing’s width apart, which was close enough for them to
interact hydrodynamically [21].
Li andLu [24] investigated the dynamics of a flapping plate using a

viscous vortex-ring model. It was found that the force and power of
the flapping plate were dominated by the vortical structures near the
body. The impulse of each vortical structurewas close to themomen-
tum of the plate transferred to the flow for the formation of such a
vortical structure. For a small axial gap, the unsteady interaction
between a rotor and a stator was enhanced, and vortex shedding un-
doubtedly played a very important role in determining the aerody-
namic performance of a stage. The motivation of the present work is
to investigate the effect of shedding vortices, which was not included
in the inviscid model of Furber and Ffowcs Williams [12], when the
axial gap between blade rows is reduced. It is expected that high
unsteady lift coefficients can be generated by reducing axial gap to
enhance rotor/stator interaction.
In earlier studies on theWeis–Foghmechanism [12,14–27], the high

unsteady lift generated on the wing/blade was thought to be related to
the circulation around the wing/blade surfaces. Maxworthy [25],
however, indicated that the sign of the circulation around the wing
surface was actually opposite to that in the shedding vortex. The
loading of a rotor blade was determined by the inflow U∞ and the
circulation around the blade, as shown in Fig. 1. On the basis of
Kelvin’s theorem, the circulation Γ1 was influenced by the intensity of
the shedding vortex Γ2. Thus, for a given inflowU∞, if the circulation
Γ1 was enhanced by shedding vortices generated by the rotor/stator
interaction when the axial gap was reduced, the rotor blade force and
stage loading could be increased accordingly. Kelvin’s circulation
theorem has long been employed to provide a qualitative
understanding of this phenomenon. Quantitative analysis, however,
is yet to be performed.The present numericalwork deals quantitatively
with the evolution of distributions of pressure, velocity, and vorticity
during the rotor/stator interaction. The study conducted by Li and Lu
[24] showed that the force and power generated by a flapping wing
were closely linked to the local vortical structures. In the present study,
the relationship between stage loading and shedding vortices is
investigated by means of comprehensive simulations of the flow
evolution of a compressor stage. A new approach is developed to
increase stage loading through the vortex lift generated by the rotor/
stator interaction. Unsteady flow characteristics are also discussed in
an effort to determine an optimal axial gap.
For most existing numerical analyses of turbomachinery flows,

conventional structured- or unstructured-grid approaches are used to
discretize the governing equations on a curvilinear grid that conforms

to the boundaries of blades. Considering the relative motion between
blades, the computational domainmust be subdivided into zones, and
the grid for each zone is generated independently. The treatment of
the zonal boundary conditions thus has a significant impact on the
accuracy and stability of the calculation. Patched and overlaid grids
are generally used to interpolate the data at the zonal boundaries, as in
the works of Rai [28,29], Giles [30], Chima [31], and Jorgenson and
Chima [32]. Rai stressed the importance of conservative treatment of
the zonal boundaries [28,29].When the axial gap between blade rows
is reduced, two difficulties arise in simulations using conventional
numerical schemes. First, orthogonality is difficult to satisfy near the
blade and zonal boundaries as the blade rows approach each other.
Second, high gradients of velocity, pressure, and density appear, due
to the rotor/stator interactions caused by a smaller axial gap. Inter-
polation errors thus occur between different computational zones,
and it becomes more difficult to obtain accurate results.
The rotor/stator interaction involves moving boundaries. In recent

decades, volume-of-fluid [33], level-set [34], vortex [35–37], and
immersed-boundary (IB) [38,39] methods have been developed for
various types of moving-boundary problems. Because the IBmethod
is easily combined with Chima’s [31] and Jorgenson and Chima’s
model [32], in which circumferential flow could be directly included
in a cylindrical grid, this method is chosen in the present work. Based
on the IB method, the unsteady flow passing multiple moving bodies
can be solved on fixed simple orthogonal meshes. To avoid data
exchange at the interface between blade rows, a numerical scheme is
established to simulate the unsteady flow associated with the rotor/
stator interaction. The presentmethod has been employed for treating
fluid–structure interactions byZhong andSun [40],Du et al. [41], and
Du and Sun [42]. Several complicated nonlinear coupling and flow
transition phenomena were captured. The method was also used to
simulate the compressible turbulent flow of a modulated fan with
pitching blades [43]. Low-frequency sound was generated with high
intensity, and the results agreed well with measurements reported by
Park andGarcés [44].Using the presentmethod, the samemeshes can
be used for different axial gaps and blade shapes; this is beneficial to
the investigation of the effects of the axial gap. The generation and
evolution of the shedding vortices between blade rows are studied to
analyze rotor/stator interactions with a small axial gap.
The present paper is structured as follows. In Sec. II, the numerical

scheme is introduced and validated. Its accuracy and stability are
demonstrated by simulating two canonical flows. In Sec. III, the
computational model for rotor/stator interaction on a stream surface
is established following Chima’s [31] and Jorgenson and Chima’s
work [32]. Section IV treats a rotor/stator system for both laminar
(incompressible) and turbulent (compressible) flows. Results indi-
cate that the intensity of shedding vortices is intimately influenced by
the rotor/stator interaction. A reduced blade gap leads to high lift on
the rotor blade and improved stage loading. At the same time, the
rotor/stator interaction increases flow unsteadiness, which may in
turn increase noise and vibration. It is found that a reduced blade gap
does not always improve performance, in spite of the generation of
vortex lift. The present work provides guidelines for optimization of
the axial gap between blade rows for turbomachinery design. The
approach can be conveniently extended to multistage problems.

II. Numerical Scheme and Validation

A. Governing Equations and Construction of Boundary Force

The nondimensional conservation equations for viscous, incom-
pressible flows in two dimensions are

∂v
∂t

� ∇ · �vv� � −∇p� 1

Re
Δv�

XM
k�1

Fk (1)

∇ · v � 0 (2)

where v � �u; v� is the velocity, p is the pressure, and Re is the
Reynolds number. As illustrated in Fig. 2, the surfaceΓ is composed ofFig. 1 Circulation around rotor and shedding vortex.
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M segments, andFk � �Fx; Fy� denotes the boundary force from the
kth segment of the object surface. The singular force can be given by

Fk�x; y; t� �
Z
Γ
f�xk; yk; t�δ�x − xk�δ�y − yk� ds (3)

where f�xk; yk; t� represents the nondimensional force density. These
forces have been constructed in a number of ways, generally based on
the immersed boundary method. In the present study, following the
model ofGoldstein et al. [39], thevirtual boundarymethod is applied to
determine the force as

f�xk; yk; t� � α

Z
t

0

�vf�xk; yk; t 0� − vo�xk; yk; t 0�� dt 0

� β�vf�xk; yk; t� − vo�xk; yk; t�� (4)

where vf and vo are the simulated and prescribed velocities of the
boundary segment. When α and β are chosen properly, jvf�xk; yk; t�−
vo�xk; yk; t�j will stay close to zero and the no-slip flow boundary
condition is satisfied. The method proposed by Lai and Peskin [45] is
applied in the present numerical scheme to improve the accuracy of
boundary conditions.

B. Numerical Discretization

Fluid–structure interactions can be appropriately treated using the
immersed boundary method because the entire velocity and pressure
fields are obtained by solving the governing equations on fixed
rectangular Cartesian meshes. The computational cost of grid regen-
eration is avoided. The fractional-step method proposed by Armfied
and Street [46] for the incompressible Navier–Stokes equations is
applied. In the present study, the discretized velocity and pressure
fields are staggered, as shown in Fig. 3. Then, Eqs. (1) and (2) are
solved as follows:

�
u� − un

Δt

�
I;j

� −
��uni�1;j�2 − �uni;j�2

Δx
� unI;Jv

n
I;J − unI;J−1v

n
I;J−1

Δy

�

−
pn
i�1;j − pn

i�1;j

Δx

� 1

Re

�
unI�1;j � 2unI;j � unI−1;j

Δx2
� unI;j�1 − 2unI;j � unI;j−1

Δy2

�
(5)

�
v� − vn

Δt

�
i;J

� −
�
unI;Jv

n
I;J − unI−1;Jv

n
I−1;J

Δx

� �vni;j�1�2 − �vni;j�2
Δy

�

−
pn
i;j�1 − pn

i;j

Δy

� 1

Re

�
vni�1;J − 2vni;J � vni−1;j

Δx2
� vni;J−1 − 2vni;J � vni;J−1

Δy2

�
(6)

Lπ � 1

Δt

�
u�I;j − u�I−1;j

Δx
� v�i;J − v�i;J−1

Δy

�
(7)

un�1
I;j � unI;j − Δt

πi�1;j − πi;j
Δx

(8)

vn�1
i;J � v�i;J − Δt

πi;j�1 − πi;j
Δy

(9)

pn�1
i;j � p�

i;j � πi;j (10)

where L is the discrete Laplace operator. The discrete Poisson
equation [Eq. (7)] is solved by means of the fast Fourier transfor-
mation, which has a cost of the order O�N ln �N��, where N is the
number of nodes in the grid.

C. Validations of Numerical Method

Two canonical examples are employed to demonstrate the numer-
ical accuracy and robustness of the present scheme. The first is
concerned with stationary boundaries, and the second is concerned
with moving boundaries.

1. Flow Passing a Stationary Cylinder

A rectangular domain, as shown in Fig. 4, is used to simulate the
flow over a stationary cylinder. Spatial resolution is achieved with a
grid ofNx × Ny � 512 × 512. The Reynolds numberRe of this flow
is defined as

Re � ρU∞d∕μ (11)

where d is the diameter of the cylinder, μ is the viscosity coefficient, ρ
is the density, and U∞ is the freestream velocity. Simulations are
performed in the Reynolds number range of 10,300. The far-field
boundary conditions are as follows:
Boundary W:

u � 1; v � 0

Boundary E:

∂u
∂x

� 0;
∂v
∂x

� 0

Fig. 2 Sketch of boundary and singular force.

Fig. 3 Variable definition and discretized grid on staggered Cartesian
mesh.
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Boundary N:

∂u
∂y

� 0; v � 0

Boundary S:

∂u
∂y

� 0; v � 0

The dimensionless time step is chosen to be 1.5 × 10−3 for all the
Reynolds numbers of concern. At each time step, drag and lift can be
obtained from

Fd�x; y; t� � −
Z
Γ
fx�xk; yk; t�δ�x − xk�δ�y − yk� ds (12)

Fl�x; y; t� � −
Z
Γ
fy�xk; yk; t�δ�x − xk�δ�y − yk� ds (13)

The drag and lift coefficients are defined as

Cd � Fd

ρU2
∞d∕2

(14)

Cl �
Fl

ρU2
∞d∕2

(15)

Figure 5 shows that the calculated time-mean drag coefficients at
different Reynolds numbers compare very well with the numerical
results of Lima E Silva et al. [47] and the experimental data of
Wieselsberger [48]. Figure 6 shows the time histories of the instan-
taneous drag and lift coefficients for Re � 200. The corresponding
Strouhal number St is 0.198. The present work gives consistent
agreement with previous numerical and experimental results for the
flow passing a stationary cylinder.

2. Flow Around a Flapping Wing

This example is concerned with a moving-boundary problem
associated with the flow around a hovering wing. The translational
and angular velocities of the wing are identical to those described by
Miller and Peskin in [49]. A single elliptical wingwith an aspect ratio
of 10 is considered. One stroke cycle lasts tfinal � 10.8.
The translational velocity during downstroke is

v�t� � 0.5

�
1� cos

�
π � πt

0.65

��
; 0 ≤ t < 0.65 (16a)

v�t� � 1; 0.65 ≤ t < 4.75 (16b)

v�t� � 0.5

�
1� cos

�
π
t − 4.75

0.65

��
; 4.75 ≤ t < 5.4 (16c)

where t is the dimensionless time. The sign of the translational
velocity during upstroke is opposite that of the downstroke. The
angular velocity is given by

Fig. 4 Computational domain and grid for flow passing a stationary cylinder.

Fig. 5 Time-mean drag coefficients as function of Reynolds number.

Fig. 6 Temporal evolution of drag and lift coefficients for flow passing
stationary cylinder at Re � 200.
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_θ � 0; 0 ≤ t < 3 (17a)

_θ � 0.5θrot

�
1 − cos

�
2π

t − 3

3.48

��
; 3 ≤ t < 6.48 (17b)

_θ � 0; 6.48 ≤ T < 10.8 (17c)

where θrot � 0.903, and the center of rotation is located at 0.2 chord
lengths from the leading edge of the wing. The chord length of the
elliptical wing is unity. The simulation is carried out using a grid of
Nx × Ny � 768 × 512 and a time step of Δt � 4 × 10−4, respec-
tively. Figure 7 shows the vorticity fields around the hovering wing
for Re � 32 at dimensionless times of t � 4 and 10. Figure 8 shows
the calculated drag and lift coefficients over one stroke of the flapping
wing for Re � 16 and 32. Good agreement is achieved with the
results reported by Miller and Peskin [49].

III. Computational Model of Rotor/Stator Interaction
on a Stream Surface

Chima [31], and Jorgenson and Chima [32] developed a model for
analyzing quasi-three-dimensional unsteady viscous flow in
turbomachinery. Flow in an axisymmetric stream surface, as shown
in Fig. 9, can be effectively solved, wherem and θ are coordinates of
the stream surface. The radius and thickness of the stream surface are

denoted by r�m� andh�m�, respectively, and are generally considered
to be known functions ofm. In the present study, they are assumed to
be constants, for the sake of model brevity and clarity. The incom-
pressible Navier–Stokes equations then can be given as:

�
∂umr
∂m

� ∂uθ
∂θ

�
� 0 (18)

ρ
∂umr
∂t

�ρ
∂u2mr
∂m

�ρ
∂uθum
∂θ

� ∂pr
∂m

�Fmr�
�
∂rσ11
∂m

� ∂σ12
∂θ

�
(19)

p
∂uθr
∂t

�ρ
∂uθumr
∂m

�ρ
∂u2θ
∂θ

�−
∂p
∂θ

�Fθr�
�
∂rσ12
∂m

� ∂σ22
∂θ

�
(20)

where

σ11 �
2μ∂um
∂m

; σ12 � μ

�
∂um
r∂θ

� ∂uθ
∂m

�
; σ22 �

∂2μuθ
r∂θ

(21)

Letting x � m, rθ � y, Eqs. (18–21) can be simplified to the same
form as the unsteady two-dimensional Navier–Stokes equations,
except that the boundary condition in the y direction is periodic.
Rai [28,29], Chima [31], and Jorgenson and Chima [32] applied

their model to unsteady rotor/stator interactions. Because multiple
grids are employed and the relative motion between the absolute and
relative frames of reference is included, the overlapping boundary
condition across the interface between the rotor and stator must be

Fig. 7 Vorticity fields of hoveringwing at dimensionless times t � 4 and
10�Re � 32�.

Fig. 8 Drag and lift coefficients over one stroke of a hovering wing:
a) Re � 16; and b) Re � 32.
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treated. In the present model, the IBmethod is used to allow for use of
a single fixed rectangular Cartesian mesh to simulate the flowfield
throughout the rotor/stator rows. The transfer of aerodynamic
information between computational zones is thus avoided.

IV. Effect of Axial Gap Between Blade Rows and
Generation of Vortex Lift

A. Rotor/Stator Interaction in Incompressible Laminar Flow

Most of the previous research [13,49] on vortex lift mechanisms
has focused on hovering motion in the low-Reynolds-number regime.

Fig. 9 Quasi-three-dimensional stream surface for compressor rotor/

stator stage.

Fig. 10 Temporal evolution of drag and lift coefficients for flow on the
stream surface of a stationary blade with different spatial resolutions:
Re � 500.

Fig. 11 Vorticity field over stationary blade on a stream surface with

spatial resolution of one:Nx ×Ny � 1024 × 256,Lx � 14, andRe � 500.

Fig. 12 Vorticity field around moving blade on a stream surface of
Re � 500 with time step Δt � 4 × 10−4.

Fig. 13 Time histories of drag and lift coefficients overmoving blade on

stream surface.

Fig. 14 Single rotor/stator stage, NACA 0012 blade: α1 � 45 deg,
α1 � −35 deg, and δ∕c � 0.03.
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We first consider an incompressible, laminar flow at Re � 500.
Equations (18–20) are solved to simulate the flow on a stream surface
with the assumption of constant r�m� and h�m�. We first test the
numerical convergence for the flow over a NACA0012 airfoil on a
stream surface.
The flow evolution over a stationary airfoil is tested at two levels of

spatial resolution:
Level 1:

Nx × Ny � 1024 × 256; Lx � 14

Level 2:

Nx × Ny � 2048 × 512; Lx � 14

whereLx is defined as the axial length of the computational zone. The
width of the stream surface isCs � 3.5. The inlet flow is set to u � 1
and Re � 500. The stagger angle is −15 deg. A time step of Δt �
4 × 10−4 is used for the calculation. Figure 10 shows the calculated
instantaneous drag and lift coefficients. The two different levels of
spatial resolution lead to almost identical results. Figure 11 shows the
calculated vorticity field. Detailed flow evolution is clearly observed,
demonstrating the adequacy of the spatial resolution.
In the IB method, temporal convergence of numerical solutions is

strongly determined by the boundarymovement. The situation over a
moving blade is thus studied to verify the time-step independence at
Re � 500. The grid size is Nx × Ny � 1152 × 512. The computa-
tional domain is Cs � 7, Lx � 15.75, the inlet flow velocity is
u � 1, and the moving velocity of the blade is v � −1. The stagger
angle of the blade is α � 30 deg. Time steps of Δt � 4 × 10−4 and
2 × 10−4 are used. Figure 12 shows the vorticity fields around the
moving blade with a time step of Δt � 4 × 10−4. Figure 13 shows
that the calculated instantaneous drag and lift coefficients from the
two different time steps are in excellent agreement. The time step

Δt � 4 × 10−4 is therefore used for the simulation of rotor/stator
interactions at Re � 500.
The third test case involves a stage composed of seven rotor blades

(standard NACA0012) and six stator blades, as shown schematically
in Fig. 14. The blade rows are designated from rotors 1 to 7 and stators
1 to 6, respectively. Thewidth of the stream surface isCs � 7. Table 1
lists the geometric parameters, where c is the blade chord, V is the
moving velocity of rotor blade, δ is the axial gap between blade rows,
andU is the inflowvelocity. The time t is normalized by the chord and
V. The Reynolds number is defined with respect to the rotational
velocity of the rotor blade:

Re � ρjVjc∕μ (22)

Table 1 Geometric parameters
for the laminar flow case

Parameter Value

c 1
δ∕c 0.03, 0.08, 0.13
α1 45 deg
α2 −30 deg
V −1
U 0.3–0.6

Fig. 15 Vorticity field around stage on stream surface: Re � 500,
δ∕c � 0.13, and U∕V � 0.5. Fig. 16 Drag and lift coefficients of blades versus time (Re � 500).
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The rotor rotation speed is used to define the lift and drag
coefficients as

Cd � Fd

ρV2c∕2
(23)

Cl �
Fl

ρV2c∕2
(24)

Figure 15 shows the vorticity field for δ∕c � 0.13 andU � 0.5 at
t � 107 (in Fig. 16). The corresponding relative positions of rotor 7
and stator 1 are given in Fig. 17. Figure 16 shows the temporal
variations of the drag and lift coefficients of the rotor and stator
blades. A rotor blade sweeps past a stator blade for every Δt � 7∕6,
and a stator blade is influenced by the wake of a rotor blade for
every Δt � 1.
The normalized coefficient of time-averaged total pressure rise is

used to characterize the performance of a rotor/stator stage, defined as

ψn�ϕ� �
Δp�

n

�1∕2�ρV2
� p�

n − p�
0

�1∕2�ρV2
(25)

where p�
n is the average total pressure at xn (n � 0, 1, 2). The total

pressure at the inlet is p�
0 , and x1 corresponds to the middle of the

rotor and stator. Also, x2 is fixed at three chords after the trailing edge
of the stage. The flow coefficient is denoted by ϕ � U∕V, and the
total pressure rise of the stage is p�

2 − p�
0 .

Figure 18 shows the time-averaged total pressure coefficients ψ1

and ψ2 as functions of the flow coefficient. The differences in ψ1 and
ψ2 indicate that the influence of the axial gap on the stage perfor-
mance increases with decreasing flow coefficient. The maximum ψ2

occurs at ϕ � 0.4. The stage pressure rise decreases at ϕ � 0.3
because the system approaches the stall margin. Figure 19 shows the
temporal evolution of the total pressure rise coefficient ψ2t for flow
coefficients ϕ � 0.3 and 0.4. The fluctuation of ψ2t increases with
decreasing blade spacing; this can be attributed to the generation of
disordered flow between the rotor and stator. A decrease of the axial
gap leads to enhanced average pressure rise along with increased
fluctuations, as shown in Fig. 19.
Obviously, stage loading is determined by the lift on rotor blades.

To determine the underlying mechanisms that dictate the effects of
the axial blade gap on the stage performance, the drag and lift
coefficients of the rotor blade are calculated for different values of δ
for ϕ � 0.4. Figure 20 indicates that the rotor blade lift increases
when blade rows are brought closer together. The lift coefficient
peaks are 0.62, 0.50, and 0.45 for δ∕c � 0.03, 0.08, and 0.13,
respectively. The time-averaged lift coefficients are 0.382, 0.356, and
0.328, suggesting that the rotor blades can do more work. The

average total pressure rises are 0.294, 0.266, and 0.208, respectively,
as shown in Fig. 18b.Meanwhile, the unsteadiness is enhanced by the
reduction of the axial gap, as shown in Fig. 19. In this example,
δ∕c � 0.08 is considered an optimal choice based on the tradeoff
between the stage loading and flow unsteadiness.
Figures 21 and 22 show, respectively, the detailed vorticity and

pressure fields around the trailing edge of the rotor blade for δ∕c �
0.03 and δ∕c � 0.13 at the instant of the maximum lift coefficient
in Fig. 20. The interaction between adjacent blade rows becomes
stronger when the axial gap decreases. The reduced axial gap
between blade rows accelerates the fluid through the space between
the rotor trailing edge and the stator leading edge when a rotor blade
passes a stator blade. Figure 21 shows that the shedding vortices from
the rotor trailing edge are visibly enhanced by the reduction of the
axial gap. The reduced axial spacing also leads to the pressure
difference shown in Fig. 22. The maximum vorticity around the
trailing edge is 30.0 and 22.9 for δ∕c � 0.03 and 0.13, respectively,
at the instant of rotor lift peak. As in the results reported by Li and Lu
[24], the force generated on the blade is primarily determined by the
vortical structure near the body. In the present study, the shedding
vortical structures are enhanced through reduction of the axial gap
between the rotor and stator. The enhanced vortex shedding from the
trailing edge of the rotor blade suggests that a higher circulation is
generated around the blade, indicating increased blade loading. The
enhancement of the stage pressure rise with reduced blade spacing is
thus corroborated.
This observation differs from the prevailing explanation of the

mechanismof rotor/stator interaction in turbomachinery, inwhich the
relevant mechanism is described as potential-flow interaction and
viscous-wake interaction from upstream blade rows. In thosemodels,

Fig. 18 Time-averaged total pressure rise coefficients ψ1 and ψ2 as
functions of flow coefficient U∕V � �Re � 500�.

Fig. 17 Relative positions of rotor 7 and stator 1 at the instant of Fig. 15
(Re � 500).
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the potential-flow interaction dominates the generation of the un-
steady flowfield when the rotor/stator gap is reduced, with the
viscous-wake interaction being the main cause of unsteadiness. The
theory does not, however, explain the observations made in the pres-
ent work. In fact, when the pressure field associated with the trailing
edge of a rotor sweeps past the leading edge of a downstream stator,
the strength of the potential interaction increases with decreasing
rotor/stator gap. More important, vortex formation on both the trail-
ing edge of the rotor and the leading edge of the stator is the primary
result of such an interaction, and this requires an accurate description
of both the potential flow and viscous effects. From this perspective,
the generation of vortex lift due to rotor/stator interaction is similar to
the high-lift formation of insects [13–21].

B. Rotor/Stator Interaction in Compressible Turbulent Flow

The previous example deals with incompressible laminar flows.
Turbomachinery, however, usually involves compressible turbulent
flow. We thus consider the following conservation equations for
compressible flows:

∂ρ
∂t

� ∂
∂xj

�ρuj� � 0 (26)

∂ρui
∂t

� ∂
∂xj

�ρujui� � −
∂p
∂xi

� ∂τij
∂xj

�
XM
l�1

Fk (27)

∂
∂t

�
ρ

�
e� uiui

2

��
� ∂

∂xj

�
h� uiui

2

�
� ∂

∂xj
�uiτ̂ij� �

XM
k�1

�u · Fk�

(28)

where e is the internal energy, h is the enthalpy, τ̂ij is the viscous
stress tensor, andFk is the boundary forces. A k-εmodel is employed
in the present work to calculate the Reynolds stress tensors.
Although the large-eddy-simulation (LES) technique offers im-

proved accuracy for complicated flows, especially separated flow, the
computational time and memory demands of LES are high. Many
studies [8,32,50,51] of rotor/stator interactions in turbomachinery
have employed one-equation and two-equation models to achieve
turbulence closure. Chima [50] compared the results with the
Baldwin–Lomax and k-ω model for blade-to-blade flows in turbo-
machinery, and it was found that the k-ω model behaved well
numerically and could reasonably simulate the effects of transition,
freestream turbulence, and surface roughness. The k-ω model fea-
tures properties similar to those of the k-ω model [52], and it can be
used to predict the evolution of a given turbulent flow with no prior
knowledge of the turbulence structure [53]. Considering the numer-
ical behavior and computational requirements, the k-ω model is
selected for the present work. The closure coefficients proposed by
Wilcox [53] are used, as shown inTable 2. The samenumerical scheme
is used as in the simulations of laminar flow. The present method was
successfullyused byDuet al. [43] to predict the compressible turbulent
flow of a modulated fan with pitching blades; that study showed that
the present numerical method is reliable for solving unsteady flows at
high Reynolds numbers. For the present study, we first validate the
model against a flat-plate boundary layer at Re � 2 × 105. The
calculated velocity profile is shown in Fig. 23.
A compressor stage consisting of two rotor and three stator blades

is investigated, as depicted in Fig. 24. The blade has the NACA2606
airfoil shape, and the chord is 0.1. Table 3 lists the geometric and
flow parameters, where the Reynolds number is defined by Eq. (22).
Mar � jVj∕c0 is the Mach numbers, and c0 is the speed of sound.
Four different axial gaps are studied in this section: δ∕c � 0.05, 0.07,
0.12, and 0.17. At the inlet, the total pressure, total temperature, and
velocity angle are specified as the boundary conditions. At the exit,

Fig. 20 Temporal evolution of drag and lift coefficients of rotor blades with different axial gaps between blade rows δ�ϕ � 0.4;Re � 500�.

Fig. 19 Temporal evolution of total pressure rise coefficients ψ2t of single stage for three different axial gaps between blade rows δ�Re � 500�.

480 DU, SUN, ANDYANG

D
ow

nl
oa

de
d 

by
 G

E
O

R
G

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

Ju
ne

 2
8,

 2
01

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.B

35
85

8 



the static pressure is specified. Figure 25 shows the calculated static
pressure rise when the axial gap is reduced from δ∕c � 0.17 to 0.05.
Figure 26 shows the temporal evolution of the lift coefficient of the
rotor blade for a flow coefficient ofϕ � 0.29. At the peak of the rotor
lift, the shedding vortices are enhanced by the rotor/stator interaction
if the blade rows are brought closer, as shown in Fig. 27. The
maximum vorticity near the trailing edge increases from 2.22 × 103

to 2.62 × 103, and the time averaged lift coefficient increases from
0.258 to 0.287 when the axial gap is reduced from δ∕c � 0.12 to
0.07. The peak rotor lift coefficient increases from 0.377 to 0.434.
This phenomenon bears close similarity to its counterpart for an
incompressible laminar flow.
Figures 28 and 29 show thevelocity relative to the rotor blade at the

instant of rotor lift peak in Fig. 26 for δ∕c � 0.12 and 0.17,
respectively. The velocities around the trailing edge of the rotor blade
increase when the gap between blade rows is reduced, especially in
the circumferential direction. This phenomenonwas not addressed in
the study by Furber and Ffowcs Williams [12], in whose analytical
model the gap between rotor and stator blades was zero. As discussed
with a reference simulation of laminar flows, the enhancement of
shedding vortices results from the acceleration of the fluid through
the spacing between the rotor trailing edge and the stator leading
edge. The peak lift increases with a reduced axial gap because the
variation of circulation around the rotor blade is influenced by the

intensity of the shedding vortex. Although compressible turbulent
flows are more complex, we obtain trends similar to those shown for
laminar flows when the axial gap is reduced.

Fig. 21 Vorticity field around trailing edge of rotor blade at instant of
lift peak for gaps of a) δ∕c � 0.03 and b) δ∕c � 0.13.

Fig. 22 Pressure field around rotor blade trailing edge at instant of lift
peak for gaps of a) δ∕c � 0.03 and b) δ∕c � 0.13.

Table 2 Closure
coefficients in the k-ωmodel

Parameter Value

Cε1 1.44
Cε2 1.92
Cε1μ 0.09
σk 1.0
σε 1.3

Table 3 Geometric parameters
for the turbulent flow case

Parameter Value

α1 58 deg
α2 −19 deg
Re 2 × 105

Mar 0.27
δ∕c 0.05, 0.07, 0.12, 0.17
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V. Conclusions

An effective numerical scheme based on the immersed boundary
method is developed to study the flow associated with rotor/stator
interaction on a quasi-three-dimensional coordinate system. Both
laminar and turbulent cases are considered. Compared to conven-
tionalmethods, the present approach has several advantages: a simple
fixed Cartesian grid is used for the calculation, whichmakes it easy to
generate the grid; and data transfer between the absolute and relative

frames of reference is avoided. The unsteady aerodynamic process
can be simulated accurately, even when the axial gap between blade
rows is very small.
By comparing with the inviscid model by Furber and Ffowcs

Williams [12], the effect of viscosity and shedding vortices on the
rotor/stator interaction can be included in the present work. The

Fig. 23 Velocity profile for a turbulent boundary layer on a flat plate:
Re � 2 × 105.

Fig. 24 Compressor stage consistingof two rotor blades and three stator
blades, NACA 2606 blade: α1 � 58 deg, α2 � −19 deg, and δ � 0.07c.

Fig. 25 Static pressure rise for different axial gaps (U∕V � 0.29).

Fig. 27 Vorticity field at peak of rotor blade lift coefficient, ϕ � 0.29:
δ∕c � 0.07 vs δ∕c � 0.12.

Fig. 26 Temporal evolution of rotor blade lift coefficient with different
axial gaps between blade rows: ϕ � 0.29.
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numerical results show that the rotor blade average lift is enhanced
with stronger shedding vortices at the trailing edge when the axial
gap between blade rows is reduced. Thus, the stage loading can be
increased, and this is beneficial to the thrust-to-weight ratio. In
contrast to what is described by the Kutta–Joukowski theorem, and
somewhat similar to theWeis–Foghmechanism, this lift is due to the
unsteady lift mechanism related to shedding vortices at the trailing
edge of rotor blade. A high-lift peak is observed in each period of
rotor/stator interaction. The fluid is accelerated by the rotor/stator
interaction when the axial gap between blade rows is reduced. This
leads to enhancement of the shedding vortex around the rotor blade.
On the basis of Kelvin’s theorem, the enhanced shedding vortices
at the trailing edge of the rotor blade suggest that higher circulation
is generated around the rotor blade, which in turn indicates that the
blade force and loading increase. The proper axial gapmust be chosen
based on a study of unsteady flow passing though a rotor/stator stage
because both the stage loading and the unsteadiness are heavily
influenced by the interaction between adjacent blade rows, especially
for a small axial gap. It should be noted that the vortical dynamics
exhibit different characteristics in two-dimensional and 3-D flows.
Three-dimensional vortex interactions involve much richer mecha-
nisms, including possible room for further reducing the axial gap
between rows. Further work on the 3-Dmodel and related experiments
will be required in order to obtain a better physical understanding of
rotor/stator interactions.
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